Принцип работы теплового насоса
В конструкцию любого теплового насоса входят следующие устройства: конденсатор, испаритель, компрессор (повышает давление) и расширитель (понижает давление). Все перечисленные элементы объединены при помощи трубопровода и представляют собой один замкнутый контур. По этому контуру циркулирует охладитель. Фреон, хладон — это технический термин присвоенный группе фторсодержащих производных метана и этана. Он представляет из себя инертный газ, который обладает сверхнизкой температурой кипения. По этой причине в «горячей» части контура он находится в газообразном состоянии, а в «холодной» он становится жидкостью.
Перемещаясь в компрессор, хладагент (чаще всего фреон) подвергается действию высокого давления и сжимается, из-за чего его температура повышается. Разогретый давлением газ поступает в другую часть теплообменника – в конденсатор. Тут промежуточный теплообменник передаёт тепло теплоносителю, который входит в систему отопления дома. Во время того, как хладагент отдает тепло, он конденсируется, снова становится жидким, а нагретый им теплоноситель подаётся в систему отопления. Жидкий фреон проходит через расширитель, где вскипает поглощая тепло. Затем перемещается в испаритель, где докипают остатки жидкой фракции – и цикл повторяется снова.
Важной особенностью тепловых насосов является универсальность использования – при низких температурах воздуха они обеспечивают обогрев помещений, а в жаркую погоду – их охлаждение. Во втором случае (реверсивный тепловой насос) используется тот же принцип. Разница лишь в том, что в жару теплоноситель движется в другом направлении – он поступает не снаружи, а из дома, из внутренних помещений.
Попробуем пересказать то же самое простыми словами.
Давайте вспомним, как работает холодильник. В камеры холодильника помещаются продукты, имеющие комнатную температуру. По закону сохранения энергии накопленное ими тепло не может испариться в никуда – его необходимо вывести за пределы холодильника, что и делается при помощи радиатора, расположенного позади агрегата. Радиатор для этого и предназначен – для рассеивания, передачи в окружающий воздух тепла, «извлеченного» из продуктов.
Теперь представим себе холодильник, который установлен на улице с открытой дверцей, а его радиатор демонтирован и установлен в доме. Даже если температура воздуха на улице будет на несколько градусов выше температуры кипения фреона, которым заправлен холодильник, агрегат будет передавать это тепло через радиатор в дом, извлекая его из окружающей среды. Это и есть простейший пример теплового насоса. Описанный принцип называется циклом Карно: именно на нем основана работа холодильных установок и климатической техники.
Разновидности тепловых насосов: аэротермальные, гидротермальные, геотермальные
Существует три основных вида тепловых насосов. Они отличаются источником получения тепла, ценой оборудования и стоимостью монтажа, параметрами работы.
1. Аэротермальные - воздушные тепловые насосы. Используют тепло из окружающего воздуха, из атмосферы. Особенность этого вида тепловых насосов в том, что для их монтажа не нужно тратиться на бурение скважин, рыть траншеи и проводить какие-либо иные трудоёмкие земляные работы – все узлы агрегата располагаются на поверхности. Это важный плюс, так как сметная стоимость существенно снижается, как и затраты времени на монтаж.
При всех перечисленных преимуществах у аэротермальных насосов есть один важный недостаток – они перестают работать при серьезных морозах. На их стабильную работу можно рассчитывать только при температуре не ниже -25℃, по этой причине воздушные насосы не могут полностью обогреть помещение при похолодании в регионах с суровыми зимами.ТН не «тянет» сильные морозы. При падении температуры воздуха до -25° и ниже, он не будет справляться с отоплением дома, поэтому в этом случае необходимо иметь дополнительный теплогенератор – электрический обогреватель или камин. В этом случае чаще используют комбинацию теплового насоса и электрического котла. При достижении уличной температуры -18-22℃, воздушный тепловой насос отключается, а электрический тэн полностью его замещает.
Еще один важный фактор, который нужно учитывать при выборе такого оборудования – это средняя влажность воздуха в том районе, где находится ваш дом. Идеальный вариант для таких систем – низкий уровень влажности и мягкие зимы. Если климат влажный и холодный, то установка воздушных тепловых насосов нецелесообразна: тепловые установки будут обледеневать и большее время стоять в режиме оттайки.
2. Гидротермальные (водяные) насосы. Используют тепло воды близлежащего водоёма или грунтовых вод. Такие установки отличаются высокой стабильностью и эффективностью работы благодаря высокому коэффициенту теплоотдачи воды и низкому уровню температурных колебаний. Гидротермальный тепловой насос имеет смысл купить в следующих случаях:
- на участке, где расположен ваш дом, залегают грунтовые воды в достаточном объёме или есть водоём;
- глубина залегания грунтовых вод – не более 40 метров;
- вода обладает свойствами, необходимыми для стабильной работы оборудования (низкий уровень содержания железа и иных примесей)
Скважины. Вариант со скважинной водой в качестве источника тепла наиболее сложный в монтаже и затратный. Он предполагает бурение двух скважин: одна будет служить для забора воды, другая – для её сброса.
Водоёмы. Какие водоёмы могут использоваться? К их числу относятся море, река или озеро, которые должны быть расположены не далее 50 метров от дома. Коллектор (трубы с хладагентом) укладывают на дно водоёма и утяжеляют грузом. Благодаря высокой температуре рабочей жидкости обеспечивается высокий КПД установки и существенная экономия на отоплении. Тем, кто живёт в регионе с мягким климатом, на побережье моря, или неподалёку от глубокого озера или реки, водяной тепловой насос способен стать источником бесплатной энергии на долгие годы.
Стоки. Еще один источник воды, который может использоваться такими насосами – это канализационные стоки. Они успешно применяются в качестве источника тепла для систем горячего водоснабжения и отопления – как частных домов, так и многоэтажек.
3. Геотермальные (грунтовые) насосы. Такой агрегат для подогрева рабочей жидкости в испарителе использует тепло грунта. Это бесконечный источник энергии, так как температура грунта ниже уровня промерзания не меняется и не зависит от погодных условий. Уже на глубине 3 метра температура грунта варьируется от +5 до +8℃, а на 10 метрах она составляет уже +10 ℃.
Системы отопления, основой которых является геотермальный насос тепла, имеют высокую эффективность, могут круглогодично поддерживать в доме комфортный микроклимат.
Использование грунтового теплового насоса подразумевает закладку трубопровода с хладагентом в грунт рядом с домом. При этом существует два варианта размещения трубы системы.
Вертикальный геотермальный зонд. В этом случае трубы располагаются в вертикальной плоскости. Глубина их размещения может достигать 100 метров, что делает этот вариант достаточно затратным. Еще один нюанс – необходимость согласования с надзорными органами бурения скважин такой глубины. Преимуществом такого технического решения является экономия площади участка.
Альтернативой глубокой закладки труб является схема, при которой используются несколько геотермальных вертикальных зондов. Они заглубляются в грунт на 20 метров и располагаются на расстоянии 5-7 метров друг от друга. При использовании такого метода эффективность зондов (удельный теплосъём) определяется типом грунта. Наиболее выигрышный – это каменистая обводненная почва, которая хорошо проводит тепло (70 Вт/м). Влажные осадочные породы обеспечивают до 50 Вт/м. Наименее «эффективны» будут сухие осадочные породы – в этом случае теплосъём не будет превышать 30 Вт/м.
Подытожим: устройство геотермальных вертикальных зондов обходится дорого из-за глубокого бурения, однако имеет свои преимущества: высокий удельный теплосъем, гарантированная стабильность температуры, экономия площади участка и минимальные повреждения ландшафта.
Горизонтальный контур (коллектор). При такой схеме расположения труб они помещаются в грунт на незначительную глубину (ниже уровня промерзания грунта – от 1,2 до 3 метров), и располагаются на большой площади. Длина труб геоконтура в каждом отдельном случае рассчитывается индивидуально. Для этой цели могут быть использованы полиэтиленовые трубы разного диаметра (от 25 до 40 мм), которые располагаются на расстоянии 500-1000 мм друг от друга.